Cellulolytic and xylanolytic enzymes of thermophiles for the production of renewable biofuels
Anju Bala and
Bijender Singh
Renewable Energy, 2019, vol. 136, issue C, 1231-1244
Abstract:
Thermophilic microorganisms are ubiquitous in nature growing on wide varieties of substrates due to the secretion of thermostable enzymes which are useful in various biotechnological industries. Thermophiles produced high titres of cellulases and xylanases in both solid-state and submerged fermentations regulated by various physico-chemical factors. Purification of these hydrolytic enzymes has been carried out by combination of various chromatographic techniques to study their biochemical properties. The majority of xylanases and cellulases from thermophiles have optimum pH in the range of 4.5–9.0 with temperature optima at 50 to 80 °C. The molecular masses of xylanases and cellulases from thermophiles ranged from 21 to 78 kDa and 30–250 kDa, respectively. Genetic engineering studies have improved their production and properties for commercial applications. Thermostable enzymes from thermophiles have been utilized in production of different biofuels like ethanol, butanol, 2,3-butanediol and hydrogen. This review describes the production, characteristics, genetic engineering and potential biotechnological applications of cellulolytic and xylanolytic enzymes of thermophiles.
Keywords: Thermophiles; Cellulases; Xylanases; Genetic engineering; Biofuels; Food nutrition (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118311741
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:136:y:2019:i:c:p:1231-1244
DOI: 10.1016/j.renene.2018.09.100
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().