EconPapers    
Economics at your fingertips  
 

Direct absorption solar collector with magnetic nanofluid: CFD model and parametric analysis

Boris V. Balakin, Oleg V. Zhdaneev, Anna Kosinska and Kirill V. Kutsenko

Renewable Energy, 2019, vol. 136, issue C, 23-32

Abstract: Direct absorption collectors (DAC) with nanofluid are among the most promising yet least studied in solar energy technology. There are numerous micro- and macroscopic factors that determine their efficiency. This complicates in situ optimization of DACs using physical prototypes. The present paper describes a multiphase CFD model of the collector, which was validated against two independent experimental datasets. The model was used for a multiparametric numerical analysis, where we altered concentration and size of the nanoparticles, as well as the geometry and inclination of the collector. The optimization resulted in up to 10% improvement in the collector's efficiency. Finally, we considered the process of thermomagnetic convection in the collector using a magnetic nanofluid. This resulted in a 30% increase in the collector performance.

Keywords: Direct absorption collector; CFD; Multiphase; Nanofluid; Thermomagnetic convection (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118315428
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:136:y:2019:i:c:p:23-32

DOI: 10.1016/j.renene.2018.12.095

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:136:y:2019:i:c:p:23-32