Thermal behavior and organic functional structure of poplar-fat coal blends during co-pyrolysis
Shuxing Qiu,
Shengfu Zhang,
Xiaohu Zhou,
Qingyun Zhang,
Guibao Qiu,
Meilong Hu,
Zhixiong You,
Liangying Wen and
Chenguang Bai
Renewable Energy, 2019, vol. 136, issue C, 308-316
Abstract:
The thermal behavior of poplar-fat coal (biomass-coal) blends and organic functional structure of formed coal-char in the co-pyrolysis temperature were investigated using Thermogravimetric analyzer, Differential scanning calorimetry, Mass spectrometry and Attenuated total reflection Fourier transform infrared spectroscopy analysis. Furthermore, the interactions between poplar and coal during co-pyrolysis were deduced. The results indicate that poplar decomposed prior to the decomposition of fat coal is not surprising, but results also indicate that the presence of poplar enhanced the thermal decomposition of fat coal at low temperature. The occurring interactions showed positive and negative effects with increasing temperature, which could be explained by chemical reaction and physical interaction, respectively. In the blends, these interactions lowered the apparent activation energy and frequency factor. The added poplar had a positive effect on decomposition of the organic functional groups. Interactions would indirectly cause higher hydrocarbon-generating potential and thermal maturity, and reduced aliphatic chains length and aromaticity. The synergistic effects between fat coal and poplar during co-pyrolysis occurred mainly at lower temperature. For the better application of poplar-fat coal blends, the suitable blending ratio of poplar to coal is below 16%. In addition, the pyrolysis temperature should be kept in 345–390 °C to obtain biomass-coal tar.
Keywords: Poplar-fat coal; Co-pyrolysis; Interaction; Kinetics; Coal-char structure (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119300138
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:136:y:2019:i:c:p:308-316
DOI: 10.1016/j.renene.2019.01.015
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().