Blade trailing edge position influencing pump as turbine (PAT) pressure field under part-load conditions
Maxime Binama,
Wen-Tao Su,
Wei-Hua Cai,
Xiao-Bin Li,
Alexis Muhirwa,
Biao Li and
Emmanuel Bisengimana
Renewable Energy, 2019, vol. 136, issue C, 33-47
Abstract:
Small hydropower is the most preferred clean energy technology, especially in remote areas away from national electrical grid reach. Within these plants, Pump as Turbines (PATs) suffer from a very small range of optimum operating conditions, leading to a chronic vulnerability to off-design conditions and associated flow instability, as well as the resultant pressure pulsations. PAT impeller design presents a great opportunity to alter the flow dynamics within PAT flow zone, probably leading to PAT performance improvement. In this respect, the present study seeks to investigate the effect of blade trailing edge hub position on pressure field characteristics within a centrifugal PAT. Using the k-ɛ turbulence model, unsteady numerical simulations were carried on a three centrifugal PAT with different blade trailing edge hub positions, namely 15 mm, 20 mm, and 25 mm. The results showed that for PAT pressure pulsations distribution, the Rotor-stator Interaction (RSI) constitutes the main influencing factor, where the Blade Passing Frequency and its harmonics were the dominant frequencies, for the three models. Moreover; different PAT models exhibited different pressure pulsation characteristics. The Rh20 model exhibited the highest level of pressure pulsation amplitudes, while the lowest level of pressure pulsation was recorded with Rh15 model.
Keywords: Pump as turbine; Pressure pulsations; Numerical analysis; Rotor-stator interaction (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118315246
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:136:y:2019:i:c:p:33-47
DOI: 10.1016/j.renene.2018.12.077
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().