EconPapers    
Economics at your fingertips  
 

Wake impact on aerodynamic characteristics of horizontal axis wind turbine under yawed flow conditions

Hakjin Lee and Duck-Joo Lee

Renewable Energy, 2019, vol. 136, issue C, 383-392

Abstract: Wind turbines spend most of time in complex and unsteady environment, such as yawed flow, atmospheric wind turbulence, wind shear, and gust. Under yawed flow condition, velocity component parallel to the rotating plane causes a development of skewed wake structure, thus leading to an azimuthal variation in the aerodynamic loads on wind turbine blades. Moreover, the trailing and shed wake vortices unequally expand, and a strong wake interaction between the hub and tip vortices, and the asymmetrical velocity deficit around the rotor area occur. In the present study, the impacts of the skewed wake on the unsteady aerodynamic behavior around rotor blade were numerically investigated and a wake deflection mechanism was discussed in detail. For this purpose, the nonlinear vortex lattice method (NVLM) coupling with a time-accurate vortex particle method (VPM) was used. A numerical simulation on the NREL Phase VI wind turbine model, exposed to a low wind speed with different yaw angles, was carried out and predicted results were compared against measurements. Comparison results showed that the aerodynamic loads can be accurately calculated, even for highly yawed flow conditions and complex wake dynamics can be clearly observed.

Keywords: Wind turbine aerodynamics; Wind turbine wake; Yaw misalignment; Skewed wake structure; Vortex particle method; Nonlinear vortex lattice method (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118315829
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:136:y:2019:i:c:p:383-392

DOI: 10.1016/j.renene.2018.12.126

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:136:y:2019:i:c:p:383-392