Geothermal development and power generation by circulating water and isobutane via a closed-loop horizontal well from hot dry rocks
Yi Wang,
Liang Zhang,
Guodong Cui,
Jun Kang and
Shaoran Ren
Renewable Energy, 2019, vol. 136, issue C, 909-922
Abstract:
Hot dry rocks are important resource for geothermal energy development. In this study, a novel technique to exploit hot dry rocks with circulating working fluid through a closed-loop in a horizontal well has been presented. A comprehensive wellbore pressure-temperature model has been established. Two typical heat transmission fluids, water and isobutane, are selected for comparison. The effects of the flow rate, the horizontal well length and the wellbore size on heat mining rate are analyzed. The power generation systems suitable for these two heat transmission fluids are compared. The simulation results indicate that a long horizontal well with a moderate mass flow rate can be applied for geothermal exploitation, and isobutane via a direct power plant has a better power generation performance than water through a binary power plant. In the case with water circulation at a mass flow rate of 3 kg/s, a net power of 143.5 kW can be obtained, while it can be increased to 258.1 kW with isobutane at a mass flow rate of 5 kg/s. Under different cost scenarios, the generalized unit cost of electricity generation can be reduced to 0.187 $/kW h when using isobutane with a reasonable low well cost and longer operation time.
Keywords: Hot dry rocks; Geothermal power generation; Horizontal well; Heat transmission fluids; Direct power plant; Binary power plant (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119300424
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:136:y:2019:i:c:p:909-922
DOI: 10.1016/j.renene.2019.01.042
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().