Co-hydrothermal liquefaction of microalgae and sewage sludge in subcritical water: Ash effects on bio-oil production
Donghai Xu,
Yang Wang,
Guike Lin,
Shuwei Guo,
Shuzhong Wang and
Zhiqiang Wu
Renewable Energy, 2019, vol. 138, issue C, 1143-1151
Abstract:
Hydrothermal liquefaction (HTL) is a promising technique of producing crude bio-oil (biocrude) from wet biomass. This work conducted the co-HTLs of microalgae (chlorella) and sewage sludge (SS) at 340 °C, 18 MPa, 0.3 MPa of initial H2 addition, 30 min of residence time under different feedstock mass ratios conditions, and explored the effects of three kinds of SS ashes on biocrude properties during microalgae HTL for the first time. Corresponding biocrude yields, elemental compositions, higher heating values, energy recoveries, boiling point distributions, and compound compositions were examined systematically. The results show that there was a certain synergistic effect on the improvement of biocrude yield other than biocrude quality in the co-HTL of microalgae and SS, especially at the 1:1 of mass ratio condition. This co-HTL could improve the actual biocrude yield by 4.7 wt% and decrease the actual solids yield by 3.6 wt% in contrast to corresponding theoretical yields. The pyrolysis-state SS ash could reduce the N and O contents, increase the C and H contents and HHV, and improve the proportion of low-boiling-point (<250 °C) compounds in the biocrude from microalgae HTL, while the oxidation-state or reduction-state SS ash was able to increase biocrude yield by approximately 3.3 wt%.
Keywords: Hydrothermal liquefaction; Microalgae; Sewage sludge; Biocrude; Ash (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119301648
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:138:y:2019:i:c:p:1143-1151
DOI: 10.1016/j.renene.2019.02.020
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().