Response of U-Oscillating Water Column arrays: semi-analytical approach and numerical results
Giovanni Malara and
Felice Arena
Renewable Energy, 2019, vol. 138, issue C, 1152-1165
Abstract:
Nowadays, sea waves are recognized as an energy source that may contribute in the future to the global electricity demand. This fact manifests itself with the quite relevant number of proposed devices aimed at converting wave energy to electrical energy. In this context, the Oscillating Water Column (OWC) system plays a leading role, as it demonstrated flexibility, in the sense that it can work in conjunction with other marine systems, and effectiveness from a strict energy harvesting perspective. As a subclass, the U-Oscillating Water Column (U-OWC) was developed for further improving the OWC performance in mild-seas, where the natural resource is not abundant, such as in the Mediterranean Sea. This wave energy converter is composed by a water column in the lower part, an air pocket over the water column which is connected to a Power Take-Off device, and an external vertical duct connecting the water column to the open wave field. This paper deals with the problem of determining the response of a plant composed by an array of U-OWCs. This problem is relevant to the design of upright breakwaters embodying U-OWC chambers, where the interaction between contiguous U-OWCs influences the dynamics of each water column and, thus, the energy-wise performance of the whole plant. The models proposed currently in the literature are based on two-dimensional approaches neglecting three-dimensional effects and the mutual interference among the chambers. Therefore, firstly, the system of integro-differential equations describing the array dynamics is derived. Then, a semi-analytical approach is proposed for determining infinite frequency added mass and retardation function matrices. For this purpose, the wave field is described by the linear water wave theory and the boundary value problems pertaining to the determination of these hydrodynamic parameters are solved by combining Fourier transform and domain decomposition techniques.
Keywords: U-Oscillating Water Column; Array; Linear water waves; Regular waves; Random waves (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119301624
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:138:y:2019:i:c:p:1152-1165
DOI: 10.1016/j.renene.2019.02.018
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().