EconPapers    
Economics at your fingertips  
 

Low NOX - LPG staged combustion double swirl flames

A.M. Elbaz, H.A. Moneib, K.M. Shebil and W.L. Roberts

Renewable Energy, 2019, vol. 138, issue C, 303-315

Abstract: As a clean, abundant energy source with demonstrated methodologies for producing liquid petroleum gas (LPG) from renewable feedstocks, the growing availability of LPG motivates this study to investigate the utilization of LPG in a staged swirl burner. The burner has an outer and annular swirlers concentric with a central jet, where the flame stability, NO emissions, and flame structure were investigated. The burner allows controlling the degree of mixing by varying swirl angles (θan, θout), and the equivalence ratios of the annular/outer streams (Φan/Φout). The stability mapping showed that the LPG admitted via the annular mixture improves the flame stability more than the outer mixture, and the central fuel injection further improves the flame’s stability. Less segregation between Φan and Φout leads to low NO emissions. Three distinct zones have featured the flame; the recirculation zone (RZ), the reaction zone; and the outer flame zone. High NO concentration was limited to the RZ, so the RZ residence time, mixture strength and temperature at the RZ boundaries are the controlling parameters for NO emissions. The largest θan together with a small θout has a significant effect on reducing the flame temperature and residence time, and thus produces low NO emissions.

Keywords: Low NOx; LPG; Emissions; Flame structure; Burner (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119300849
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:138:y:2019:i:c:p:303-315

DOI: 10.1016/j.renene.2019.01.070

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:138:y:2019:i:c:p:303-315