EconPapers    
Economics at your fingertips  
 

Influence of the operating conditions on the behavior and deactivation of a CuO-ZnO-ZrO2@SAPO-11 core-shell-like catalyst in the direct synthesis of DME

M. Sánchez-Contador, A. Ateka, M. Ibáñez, J. Bilbao and A.T. Aguayo

Renewable Energy, 2019, vol. 138, issue C, 585-597

Abstract: The behavior of the CuO-ZnO-ZrO2@SAPO-11 core-shell catalyst in the direct synthesis of DME from H2 + CO + CO2 mixtures has been assessed. The effect of the reaction conditions (temperature, pressure, space-time) and feed composition (CO2 and H2 concentration) on the DME yield and selectivity, CO2 and COx (CO2+CO) conversions and stability of the catalyst have been studied. The experiments have been carried out in a fixed-bed reactor in the following condition ranges: 250–325 °C; 10–50 bar; space-time, 1.25–15 g h molC−1; CO2/COx molar ratio in the feed, 0–1; and H2/COx molar ratio in the feed, 2.5–4; time on stream, up to 48 h. Under mild conditions (275–300 °C range, 20–30 bar, space-time over 5 g h molC−1, CO2/COx molar ratio in the 0.5–0.75 range, and H2/COx molar ratio around 3) a good compromise is reached between the yield of DME and the conversion of CO2, with high catalyst stability. Coke deposition is the main cause of catalyst deactivation, formed by condensation of the hydrocarbon byproducts, blocking the metallic sites in the core. The formation rate of this fraction of coke is greater than that of the coke deposited in the SAPO-11 of the shell. Increasing reaction temperature favors the formation of coke, while co-feeding CO2 attenuates this formation, due to the increase of H2O concentration.

Keywords: Dimethyl ether; CO2 conversion; Direct DME synthesis; Core-shell catalyst; Deactivation; Coke (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119301065
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:138:y:2019:i:c:p:585-597

DOI: 10.1016/j.renene.2019.01.093

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:138:y:2019:i:c:p:585-597