EconPapers    
Economics at your fingertips  
 

Efficient hydrogen production using Ni-graphene oxide-dispersed laser-engraved 3D carbon micropillars as electrodes for microbial electrolytic cell

Ashish Yadav and Nishith Verma

Renewable Energy, 2019, vol. 138, issue C, 628-638

Abstract: A nickel (Ni)-graphene oxide (GO) dispersed carbon film was prepared by the carbonization of the phenolic precursor-based polymer. Three dimensional (3D) micropillars were fabricated on the carbon film using laser ablation technique. The micropillars-engraved film was used as electrodes in a single chamber microbial electrolytic cell (MEC) for hydrogen (H2) production. Besides promoting biofilm formation at anode, the 3D micropillars provided relatively more exposure to the in situ dispersed electrocatalytic Ni nanoparticles (NPs) and electroconductive GO in the carbon film. The Tafel slope of ∼49 mV dec−1 indicated that Heyrovsky reaction or electrochemical desorption was the rate determining step for H2 evolution. A H2 production rate of 4.22 ± 0.21 m3m−3d−1 was measured at 0.8 V in the prepared electrode-based MEC. Whereas the overall H2 and cathodic recoveries were measured to be 92.3 ± 2.77% and 98.7 ± 0.99%, respectively, the Coulombic and overall energy efficiencies were determined to be 93.5 ± 2.81% and 72.2 ± 3.61%, respectively. The relatively higher efficiency of the MEC was ascribed to the synergistic contributions of the 3D micropillars, Ni NPs and GO, indicating the prepared electrode to be a viable alternative to the expensive noble metal-based electrodes used in MECs for H2 production.

Keywords: Microbial electrolytic cell; H2 production; 3D micropillars; Graphene oxide; Laser ablation; Ni nanoparticles (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119301132
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:138:y:2019:i:c:p:628-638

DOI: 10.1016/j.renene.2019.01.100

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:138:y:2019:i:c:p:628-638