EconPapers    
Economics at your fingertips  
 

A resistive-capacitive model of pile heat exchangers with an application to thermal response tests interpretation

Charles Maragna and Fleur Loveridge

Renewable Energy, 2019, vol. 138, issue C, 891-910

Abstract: Pile Heat Exchangers (PHE) are an attractive solution to reduce both costs and greenhouse gas emissions for new buildings. However, most state-or-the-art PHE thermal models overlook the heat capacitance of the pile concrete, which is known to be important in thermal analysis. A semi-analytical (SA) model accounting for the pile concrete inertia is developed and validated against a finite-element code. Analysis shows that accounting for PHE inertia always leads to higher performances compared to purely resistive models. Application of the model to interpretation of thermal response tests data allows estimates to be made of the minimum duration test required to obtain reliable values of ground and concrete conductivities.

Keywords: Pile heat exchangers; Thermal models; Thermal response test; Near-surface geothermal energy; Ground source heat pumps (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119301569
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:138:y:2019:i:c:p:891-910

DOI: 10.1016/j.renene.2019.02.012

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:138:y:2019:i:c:p:891-910