A resistive-capacitive model of pile heat exchangers with an application to thermal response tests interpretation
Charles Maragna and
Fleur Loveridge
Renewable Energy, 2019, vol. 138, issue C, 891-910
Abstract:
Pile Heat Exchangers (PHE) are an attractive solution to reduce both costs and greenhouse gas emissions for new buildings. However, most state-or-the-art PHE thermal models overlook the heat capacitance of the pile concrete, which is known to be important in thermal analysis. A semi-analytical (SA) model accounting for the pile concrete inertia is developed and validated against a finite-element code. Analysis shows that accounting for PHE inertia always leads to higher performances compared to purely resistive models. Application of the model to interpretation of thermal response tests data allows estimates to be made of the minimum duration test required to obtain reliable values of ground and concrete conductivities.
Keywords: Pile heat exchangers; Thermal models; Thermal response test; Near-surface geothermal energy; Ground source heat pumps (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119301569
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:138:y:2019:i:c:p:891-910
DOI: 10.1016/j.renene.2019.02.012
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().