EconPapers    
Economics at your fingertips  
 

Thermo-sonic assisted enzymatic pre-treatment of sludge biomass as potential feedstock for oleaginous yeast cultivation to produce biodiesel

P. Selvakumar, A. Arunagiri and P. Sivashanmugam

Renewable Energy, 2019, vol. 139, issue C, 1400-1411

Abstract: Solubilization of activated sludge is a crucial process before its use as an appropriate renewable feedstock for biofuel generation which could be a legitimate alternative arrangement for contemporary concerns on fuel crisis, climate change and food security. The present study investigates the thermo-sonic assisted enzymatic pre-digestion of municipal waste activated sludge (MWAS) to cultivate oleaginous yeast Naganishia liquefaciens NITTS2 to produce lipids for biodiesel production. The maximum suspended solids reduction and sCOD observed were 36.42 ± 0.7 and 41.35 ± 0.5%, respectively at optimum conditions. The pre-digested sludge was used as a nutritional medium for yeast cultivation and the obtained maximum biomass and lipid content were 17.85 ± 0.64 g/L and 65.43 ± 1.60%, respectively. The consumption of nutrients present in the medium was analyzed before and after the batch cultivation. Lipid extraction was optimized using ultrasonication at different temperature and its characteristic profile was analyzed by GC-MS. Fatty Acid Methyl Esters (FAMEs) was produced (88.45 ± 1.2%) through enzymatic transesterification and further confirmed by 1H NMR spectroscopy. Thus, the combined pre-digestion would help to improve the solids reduction in the MWAS and the solubilized sludge could be used as a renewable substrate for biodiesel production.

Keywords: Municipal waste activated sludge; Thermo-sonic pre-digestion; Enzymatic sludge hydrolysis; GC-MS; 1H NMR; Biodiesel production (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119303453
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:139:y:2019:i:c:p:1400-1411

DOI: 10.1016/j.renene.2019.03.040

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:139:y:2019:i:c:p:1400-1411