Comparative analysis of Gaussian Process power curve models based on different stationary covariance functions for the purpose of improving model accuracy
Ravi Kumar Pandit and
David Infield
Renewable Energy, 2019, vol. 140, issue C, 190-202
Abstract:
Gaussian Process (GP) models are increasingly finding application in wind turbine condition monitoring and in particular early fault detection. GP model accuracy is greatly influenced by the choice and type of the covariance functions (used to described the similarity between two given data points). Hence, the appropriate selection and composition of covariance functions is essential for accurate GP modelling.
Keywords: Condition monitoring; Power curve; Covariance functions; Gaussian process (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119303520
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:140:y:2019:i:c:p:190-202
DOI: 10.1016/j.renene.2019.03.047
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().