EconPapers    
Economics at your fingertips  
 

Comparative analysis of Gaussian Process power curve models based on different stationary covariance functions for the purpose of improving model accuracy

Ravi Kumar Pandit and David Infield

Renewable Energy, 2019, vol. 140, issue C, 190-202

Abstract: Gaussian Process (GP) models are increasingly finding application in wind turbine condition monitoring and in particular early fault detection. GP model accuracy is greatly influenced by the choice and type of the covariance functions (used to described the similarity between two given data points). Hence, the appropriate selection and composition of covariance functions is essential for accurate GP modelling.

Keywords: Condition monitoring; Power curve; Covariance functions; Gaussian process (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119303520
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:140:y:2019:i:c:p:190-202

DOI: 10.1016/j.renene.2019.03.047

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:140:y:2019:i:c:p:190-202