Short-term PV power forecasting using hybrid GASVM technique
William VanDeventer,
Elmira Jamei,
Gokul Sidarth Thirunavukkarasu,
Mehdi Seyedmahmoudian,
Tey Kok Soon,
Ben Horan,
Saad Mekhilef and
Alex Stojcevski
Renewable Energy, 2019, vol. 140, issue C, 367-379
Abstract:
The static, clean and movement free characteristics of solar energy along with its contribution towards global warming mitigation, enhanced stability and increased efficiency advocates solar power systems as one of the most feasible energy generation resources. Considering the influence of stochastic weather conditions over the output power of photovoltaic (PV) systems, the necessity of a sophisticated forecasting model is increased rapidly. A genetic algorithm-based support vector machine (GASVM) model for short-term power forecasting of residential scale PV system is proposed in this manuscript. The GASVM model classifies the historical weather data using an SVM classifier initially and later it is optimized by the genetic algorithm using an ensemble technique. In this research, a local weather station was installed along with the PV system at Deakin University for accurately monitoring the immediate surrounding environment avoiding the inaccuracy caused by the remote collection of weather parameters (Bureau of Meteorology). The forecasting accuracy of the proposed GASVM model is evaluated based on the root mean square error (RMSE) and mean absolute percentage error (MAPE). Experimental results demonstrated that the proposed GASVM model outperforms the conventional SVM model by the difference of about 669.624 W in the RMSE value and 98.7648% of the MAPE error.
Keywords: Genetic algorithm (GA); Genetic algorithm based support vector machine (GASVM); Photovoltaic (PV); Short-term forecasting; Support vector machine (SVM) (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (37)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119302411
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:140:y:2019:i:c:p:367-379
DOI: 10.1016/j.renene.2019.02.087
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().