Fusion joining of thermoplastic composite wind turbine blades: Lap-shear bond characterization
Robynne E. Murray,
Jason Roadman and
Ryan Beach
Renewable Energy, 2019, vol. 140, issue C, 501-512
Abstract:
Wind turbine blades are typically manufactured from a small number of components which are bonded together with an adhesive. Over the life span of a wind turbine, the static and fatigue loads in varying environmental conditions can lead to cracking and/or debonding of the adhesive joints, ultimately leading to blade structural collapse. The objective of this work is to investigate fusion joining of wind turbine blades manufactured using thermoplastic resin. Thermoplastic resins for wind turbine blades can reduce cycle times and energy consumption during manufacturing and facilitate end-of-life recycling and on-site manufacturing. Additionally, fusion joining of these materials can replace adhesives, resulting in stronger and more robust blades. This work showed that, compared to typical adhesives used in wind turbine blades, fusion welding resulted in an increase in both the static and fatigue lap-shear strength as compared to bonded thermoplastic composite coupons. This initial coupon-scale research suggests that there is potential for developing fusion welding techniques for full-scale wind turbine blades.
Keywords: Fusion joining; Thermoplastic resin; Lap-shear strength; Composite; Wind turbine blade (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119303908
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:140:y:2019:i:c:p:501-512
DOI: 10.1016/j.renene.2019.03.085
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().