EconPapers    
Economics at your fingertips  
 

On addressing wind turbine noise with after-market shape blade add-ons

S.S. Rodrigues and A.C. Marta

Renewable Energy, 2019, vol. 140, issue C, 602-614

Abstract: When stricter noise limits are enforced to legacy wind turbines already deployed, actions need to be taken. In this paper, we present a solution of retrofitting wind turbine blades with additional outer layer skins that change their aeroacoustic footprint. An optimization design framework produces add-ons shapes that, when attached to blades, reduce their noise without compromising aerodynamic performance. The Blade Element Momentum theory is used to predict the aerodynamic performance and generated noise is predicted using semi-empirical models. Two competing metrics are analyzed, Annual Energy Production and Overall Sound Pressure Level, using a multi-objective genetic algorithm. The add-on shapes are parameterized using NURBS totaling 54 design variables. The AOC 15/50 wind turbine is used as a test case and optimal solutions selected from the Pareto front are discussed. The after-market add-on approach produces solutions that range from an increase of 8.7% in energy production to a decrease of 3.5 dB(A) in noise levels, with an estimated blade weight increase of less than 4%. While the add-on approaches typically fall short in terms of performance when compared to a new blade design, this retrofiting is expected to be a competitive alternative when compared to the cost of replacing the whole blade.

Keywords: Noise reduction; Aeroacoustic analysis; Airfoil self-noise; Design optimization; Retrofitting; Multi-objective optimization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119303611
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:140:y:2019:i:c:p:602-614

DOI: 10.1016/j.renene.2019.03.056

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:140:y:2019:i:c:p:602-614