Optimization of microwave-assisted solvent extraction of non-edible sandbox (Hura crepitans) seed oil: A potential biodiesel feedstock
Ayooluwa Paul Ibrahim,
Ropo Oluwasesan Omilakin and
Eriola Betiku
Renewable Energy, 2019, vol. 141, issue C, 349-358
Abstract:
In this study, modeling and optimization of the microwave-assisted solvent extraction (MASE) of sandbox seed oil (SSO) were investigated. D-optimal design with two numeric (extraction time (5–15 min), heating power (180–540 W)) and two categoric (solid/solvent ratio (1:10–1:40) and solvent type (ethyl acetate, n-hexane and acetone)) factors was used to model and optimize SSO yield. The model developed had coefficient of determination (R2) of 0.9821, indicating it can be used to adequately describe the MASE process with high accuracy. Optimum SSO yield of 72.20 ± 0.35 wt% could be obtained using extraction time of 5 min, microwave heating power of 180 W, solid/solvent ratio of 1:40 and ethyl acetate as solvent of extraction. Performance evaluation of the solvents in terms of oil yield showed that ethyl acetate was the most efficient (72.20 ± 0.35 wt%) followed by acetone (57.90 ± 1.27 wt%) and n-hexane (56.25 ± 1.77 wt%). Physicochemical properties of the SSO varied depending on the solvent of extraction. Fatty acids profile of the SSO showed that it had more unsaturated (79.7–84.5%) fractions than saturated (15.5–20.2%) fractions. Therefore, SSO could serve as feedstock for biodiesel and other oleochemical production.
Keywords: Non-food oil; Biodiesel; Fatty acid; Modeling; Optimization; Process intensification (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119304860
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:141:y:2019:i:c:p:349-358
DOI: 10.1016/j.renene.2019.04.010
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().