ZnO:InN oxynitride: A novel and unconventional photocatalyst for efficient UV–visible light driven hydrogen evolution from water
Sumithra Sivadas Menon,
Hafeez Yusuf Hafeez,
Bhavana Gupta,
K. Baskar,
Gopal Bhalerao,
Shamima Hussain,
Bernaurdshaw Neppolian and
Shubra Singh
Renewable Energy, 2019, vol. 141, issue C, 760-769
Abstract:
A novel UV–visible light active oxynitride photocatalyst, ZnO:InN, has been demostrated to exhibit efficient hydrogen evolution from water as compared to some conventional photocatalysts. A reduction in bandgap (2.82 eV), as estimated from diffuse reflectance spectra, is explained using Valence band XPS studies and attributed to the upshift in valence band maximum. Photocatalytic activity of the samples has been demonstrated by organic dye degradation, where 92% decay was observed in 180 min under direct sunlight. Photoelectrochemical studies under visible light showed significant photoresponse with a photocurrent density of ∼8 μA/cm2. This study, as per our knowledge, is first of its kind where ZnO:InN oxynitride has been explored as a UV–visible light active photocatalyst with significant H2 generation of ∼48 μmol/g by UV–visible light water splitting using methanol scavenger. The results show the promising future applications of ZnO:InN oxynitride as a sunlight active photocatalyst for hydrogen production.
Keywords: Oxynitride; Photoelectron spectroscopy; Photoelectrochemical (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119304458
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:141:y:2019:i:c:p:760-769
DOI: 10.1016/j.renene.2019.03.131
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().