EconPapers    
Economics at your fingertips  
 

Mathematical modeling of heat storage unit for air heating of the building

Dawid Taler, Piotr Dzierwa, Marcin Trojan, Jacek Sacharczuk, Karol Kaczmarski and Jan Taler

Renewable Energy, 2019, vol. 141, issue C, 988-1004

Abstract: In this paper, the thermal performance of the heat storage unit made of repeatable modules was carried out. The heat accumulator that is used in solar installations may be a separate unit, or it may be a building wall insulated on the inner and outer surfaces. It is a heat storage unit with dynamic discharge using forced air flow through the channels. The transient temperature field in the walls of the channels was modeled using three different methods: finite volume method (FVM), control volume based finite element method (CVFEM), and finite element method (FEM). The CVFEM was chosen for the construction of a full model of the heat storage unit due to the ease of modeling a solid filling of a heat storage unit with a complex shape. The numerical model of the heat storage unit with the air flow through channels was developed. The CFD simulation was also carried out. In the mathematical model of the heat accumulator, it was taken into account that air flow can be laminar, transitional or turbulent. The finite volume method with integral averaging of air temperature over the finite volume length was developed so that accurate air temperature distribution can be determined even with a small number of finite volumes.

Keywords: Building heating; Thermal energy storage; Transient heat transfer model; Comparison of numerical and experimental results (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119305403
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:141:y:2019:i:c:p:988-1004

DOI: 10.1016/j.renene.2019.04.056

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:141:y:2019:i:c:p:988-1004