On the optimal shape of secondary reflectors for linear Fresnel collectors
Alexandros Vouros,
Emmanouil Mathioulakis,
Elias Papanicolaou and
Vassilis Belessiotis
Renewable Energy, 2019, vol. 143, issue C, 1454-1464
Abstract:
In this paper, a new, ray-tracing optimization for the design of secondary reflectors of linear Fresnel collectors is presented. Optimization is capable to produce the optimum shape of reflectors, by tailoring properly oriented segments, so that the maximum concentration of off-target rays is redirected back to the cylindrical receiver. As an illustrative example, it is applied to the design of the secondary reflector for an existing installation. The shapes of the secondary reflectors are different for the different vertical distances from the receiver. The optical performance of the various configurations is investigated by utilizing free, open source ray-tracing software. The maximum value of successful rays ratio, i.e. the fraction of sun rays that intersect the receiver, reaches 0.97 and 0.84, for secondary reflectors located 5 and 12.5 cm above the receiver, respectively.
Keywords: Linear Fresnel collector; Secondary reflector; Optimization; Optical performance (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119307050
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:143:y:2019:i:c:p:1454-1464
DOI: 10.1016/j.renene.2019.05.044
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().