Acidic chitosan membrane as an efficient catalyst for biodiesel production from oleic acid
Nisakorn Saengprachum,
Dongren Cai,
Mantian Li,
Ling Li,
Xiaocheng Lin and
Ting Qiu
Renewable Energy, 2019, vol. 143, issue C, 1488-1499
Abstract:
Via the crosslinking of chitosan and sulfosuccinic acid (SSA), the acidic chitosan membrane (ACM) was prepared for biodiesel production from esterification of oleic acid and methanol. ATR-FTIR, TGA, XRD, SEM and EDX were applied to characterize the prepared ACM. The acidic site density and swelling capacity of the prepared ACM were investigated. The ACM possessed the 4.62 mmol/g of acidic site density, which was just a little less than 4.76 mmol/g of Amberlyst-15, meanwhile, ACM was proven to be much higher than Amberlyst-15 in swelling capacity. Under the same reaction, the 98.76% of conversion can be obtained while the Amberlyst-15 only reached 44.30%. The optimization of process variables was conducted by the combination of single factor experiment and Box-Behnken design (BBD) response surface methodology. The catalytic activity of ACM in different esterification of fatty acids and alcohols was also investigated. And the catalytic mechanism of esterification catalyzed by ACM was clarified. Based on the catalytic mechanism, the kinetic model was established to describe the esterification and obtain relevant kinetic parameters (Ea+, Ea−, A+ and A-), meanwhile, the kinetic results were compared to the same reaction with different catalysts in detail. Besides, the reusability of the prepared ACM was studied.
Keywords: Biodiesel production; Acidic chitosan membrane; Oleic acid; Esterification (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119307748
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:143:y:2019:i:c:p:1488-1499
DOI: 10.1016/j.renene.2019.05.101
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().