The influence of wind speed, aperture ratio and tilt angle on the heat losses from a finely controlled heated cavity for a solar receiver
Ka Lok Lee,
Alfonso Chinnici,
Mehdi Jafarian,
Maziar Arjomandi,
Bassam Dally and
Graham Nathan
Renewable Energy, 2019, vol. 143, issue C, 1544-1553
Abstract:
The first systematic experimental study of the combined influences of wind speed (0–9 m/s), aperture ratio (0.33–1) and tilt angle (15°–45°) on the mixed (free and forced) convective heat losses from a heated cavity, is presented. The cylindrical cavity is heated by 16 individually temperature-controlled heating elements in the open section of a wind tunnel. Heat flux distribution and total heat losses from the cavity were measured. A complex inter-dependence was found between aperture ratio, wind speed and convective heat losses. In particular, the total heat losses can vary by up to ∼75% by varying the aperture ratio from 0.33 to 0.75, for no wind condition, but the effect of aperture ratio is decreased as wind speed is increased. The tilt angle was found to have a small effect on the heat losses relative to the aperture ratio and wind speed. Nevertheless, the average minimum mixed heat loss for various wind speeds occurs for a tilt angle of between 15° and 30° for a downward tilting solar tower system.
Keywords: Concentrated solar thermal radiation; Heat loss; Solar thermal power; Solar receiver; Temperature distribution; Wind (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119306676
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:143:y:2019:i:c:p:1544-1553
DOI: 10.1016/j.renene.2019.05.015
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().