Experimental based multilayer perceptron approach for prediction of evacuated solar collector performance in humid subtropical regions
Mrinal Bhowmik,
P. Muthukumar and
R. Anandalakshmi
Renewable Energy, 2019, vol. 143, issue C, 1566-1580
Abstract:
Solar collectors are efficient in utilising solar thermal energy for heating applications as their efficiency is quite high even in the medium temperature range, which motivated to design a high efficient collector system. In this study, an experimental investigation is carried out by developing a series of evacuated tube solar collectors with U-tube configuration using water as a working fluid. The performance of the collector system is continuously measured throughout the day. A trade-off study is carried out considering all the performance parameters. On the basis of experimental datasets, a multilayer perceptron (MLP) architecture is developed to predict thermal efficiency, useful heat gain and water outlet temperature of the evacuated tube collector as a function of solar irradiation, mass flow rate of water and water inlet temperature. It is demonstrated that the MLP model has an excellent agreement with experimental data as the mean square error is very low (<0.001). Test results showed that the MLP architecture gives a precise prediction of the actual collector performance parameters for different operating conditions. Test results also indicate that MLP model is a robust prediction platform for evaluating the solar collector performance.
Keywords: U tube-evacuated solar collectors; Experimental analysis; Useful heat gain; Thermal efficiency; Multilayer perceptron; Trade-off analysis (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119307669
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:143:y:2019:i:c:p:1566-1580
DOI: 10.1016/j.renene.2019.05.093
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().