Parametric study on a wall-mounted attached ventilation system for night cooling with different supply air conditions
Wenhui Ji,
Houhua Wang,
Tao Du and
Zili Zhang
Renewable Energy, 2019, vol. 143, issue C, 1865-1876
Abstract:
Night ventilation is a sustainable approach to achieve comfortable built environment with relatively low energy consumption in summer. However, the cooling performance of conventional night ventilation in the hot summer climate zone is unsatisfactory due to the insignificant climatic potential. Considering that a large proportion of the heat gains is stored in the building envelope, particularly in the external wall, we propose a novel wall-mounted attached night ventilation (WANV) for night cooling. This novel system is capable of generating a downward air jet that directly flows over the internal surface of the west-external wall to achieve enhanced convective cooling performance on the west wall during the nighttime. The present paper numerically investigates the air flow patterns and temperature field distributions in the test chamber with WANV under different supply air conditions (air velocity and temperature). The shear-stress transport k–omega turbulence model, a blending two-equation eddy-viscosity turbulence model which is suitable to capture airflows with strong streamline curvature and separation, is employed in the numerical study. Comparisons between the experimental data and the simulation results are carried out, and the good agreement suggests that the numerical model is able to predict the air velocity and temperature profiles of the chamber with WANV. The simulation results show that intensive air recirculation and enhanced convection are achieved due to the high turbulent air momentum in the scenario with WANV. A similar tendency of the decay of air velocities in the near-wall region is observed regardless of the supply air velocity. Furthermore, a correlation between the air velocity and the height above the floor is proposed. The cooling performance of WANV is significantly improved by decreasing the supply air temperature. Additionally, the impact of supply air conditions on the cooling performance is quantified using the relative heat releasing effectiveness index, which suggests that the optimal supply air velocity is approximately 4 m/s in hot summer at Chongqing or locations with similar climate conditions.
Keywords: night ventilation; Wall-attached jet; Parametric study; Heat removal; Supply air conditions (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119308432
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:143:y:2019:i:c:p:1865-1876
DOI: 10.1016/j.renene.2019.06.022
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().