A semi-analytical noise prediction model for airfoils with serrated trailing edges
Yannick D. Mayer,
Benshuai Lyu,
Hasan Kamliya Jawahar and
Mahdi Azarpeyvand
Renewable Energy, 2019, vol. 143, issue C, 679-691
Abstract:
Trailing edge serrations are a widely used passive technique for the suppression of aerodynamic noise from wind turbines. Despite their popularity, no reliable engineering prediction tool has yet been developed to estimate the noise reduction for different serrations. This paper concerns the development of an engineering noise prediction tool, based on a recently developed mathematical model. Results show that the new model has several advantages over Howe's model, as it can take both destructive and constructive sound interference effects into account. Two surface pressure wavenumber-frequency models are implemented, namely Chase and TNO models, to demonstrate the sensitivity of the model to boundary layer characteristics. The boundary layer parameters needed in the wavenumber-frequency models are obtained using RANS CFD simulations. Far-field noise comparisons are provided between the proposed prediction tool and experimental data for a NACA0018 airfoil. A parametric study regarding the boundary layer changes of serrated airfoils signifies the need for more reliable wavenumber-frequency models. The results presented in the paper show that the proposed engineering tool can provide a fairly accurate estimate of the noise reduction performance of serrated airfoils, but its accuracy relies heavily on the availability of reliable near-field boundary layer information.
Keywords: Aeroacoustics; Trailing edge serrations; Scattering; Boundary layer; Trailing edge noise (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119306172
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:143:y:2019:i:c:p:679-691
DOI: 10.1016/j.renene.2019.04.132
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().