Development of a method to produce standardised and storable inocula for biomethane potential tests – Preliminary steps
J. Heerenklage,
D. Rechtenbach,
I. Atamaniuk,
A. Alassali,
R. Raga,
K. Koch and
K. Kuchta
Renewable Energy, 2019, vol. 143, issue C, 753-761
Abstract:
In biomethane potential (BMP) tests, different sources and origins of inocula might cause significant variations in the tests’ results, preventing from acquiring a harmonised and standardised evaluation of the different substrates. In this study, a method to produce standardised and storable inocula was elaborated. For the development of the different investigation steps a control sludge originated from a wastewater treatment plant was utilised. Freeze-drying was applied in the framework of this study as a long-term conservation method for the anaerobic inocula. In order to ensure a closed system with anaerobic conditions at all times, a test system was developed to allow accurate and representative mass-balance experiments. The test results demonstrated that inocula conservation and re-suspension in BMP tests is possible; the limit value of the expected methane yield of a positive and lyophilised reference-control, was reached. However, a lag phase of 7–10 days was obtained, possibly due to the damage of microorganisms as a consequence of the conservation process. Further investigations need to be carried out to optimise the conservation process of the produced inocula or an initial preparation phase should be considered to reduce the lag phase.
Keywords: Biomethane potential tests; Inoculum standardisation; Lyophilisation; Instant inoculum (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119306974
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:143:y:2019:i:c:p:753-761
DOI: 10.1016/j.renene.2019.05.037
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().