EconPapers    
Economics at your fingertips  
 

Optimum design and characteristics of potassium-based sorbents using SiO2 for post-combustion CO2 capture

Min Sun Cho, Soo Chool Lee, Ho Jin Chae, Yong Mok Kwon, Hyun Ji Kim, Min Young Ryu, Joong Beom Lee and Jae Chang Kim

Renewable Energy, 2019, vol. 144, issue C, 107-115

Abstract: SiO2 is a common material and is used in various industrial fields. However, the potassium-based sorbents using SiO2 as a support have the low CO2 capture capacities. In this study, the CO2 sorption and regeneration properties of potassium-based sorbents using SiO2 as a support were investigated to determine the cause of the low CO2 capture capacities. In addition, an optimum design method of the potassium-based sorbents using SiO2 as a support having excellent performance was proposed. The CO2 capture capacities of the sorbents decreased as the calcination temperature increased from 500 °C to 700 °C owing to the disappearance of the active material (K2CO3) through the formation of inactive components, such as K2Si2O5 and K2Si4O9. On the other hand, the potassium-based sorbent using SiO2 calcined at 500 °C had a high CO2 capture capacity of 152.3 mg CO2/g sorbent and excellent regeneration properties under the process simulation conditions. Control of the calcination temperature and the mole ratio of K2CO3 to SiO2 was important for obtaining the sorbents with a high CO2 capture capacity. Consequently, SiO2 can be used as a support or additive material in the design of potassium-based sorbents with a high CO2 capture capacity and excellent regeneration properties for post-combustion CO2 capture by controlling the amount of inactive component formed in the calcination process.

Keywords: K2CO3; SiO2; Regeneration; Calcination effect; Post-combustion CO2 capture (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118312424
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:144:y:2019:i:c:p:107-115

DOI: 10.1016/j.renene.2018.10.057

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:144:y:2019:i:c:p:107-115