Numerical simulation on solar collector and cascade heat pump combi water heating systems in Kazakhstan climates
Ye. Yerdesh,
Z. Abdulina,
A. Aliuly,
Ye. Belyayev,
M. Mohanraj and
A. Kaltayev
Renewable Energy, 2020, vol. 145, issue C, 1222-1234
Abstract:
At low ambient temperatures, the heating capacity and coefficient of performance of a single stage vapour compression heat pump cycle is significantly getting reduced. The two stage cascade heat pump cycle operating with two different refrigerants provides a sustainable solution to lift the condenser temperature above 343 K. In this work, a numerical simulation model was developed for predicting the performance of a solar collector and two stage cascade heat pump combi water heating systems under Kazakhstan climatic conditions. The numerical simulation was performed for winter climatic conditions using nine refrigerant pairs such as, R32/R290, R32/R1234yf, R32/R134a, R410A/R290, R410A/R1234yf, R410A/R134a, R744/R290, R744/R1234yf and R744/R134a. The influences of solar irradiation, ambient temperature and condenser temperature are discussed. The solar collector and two stage heat pump combi heating system has about 30% energy savings when compared to the conventional two stage cascade heat pump without integration solar collectors. The R32/R290 refrigerant pair is having maximum coefficient of performance of 2.4 at 323 K condensing temperature and 263 K evaporating temperature. The refrigerant R744/R290 pair is identified as an environment friendly sustainable option in terms of its global warming impact for two stage cascade heat pump applications.
Keywords: Cascade heat pump; Solar collector; Kazakhstan climates; Numerical simulation (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811930936X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:145:y:2020:i:c:p:1222-1234
DOI: 10.1016/j.renene.2019.06.102
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().