EconPapers    
Economics at your fingertips  
 

Design and development of small wind turbine for power generation through high velocity exhaust air

Akhilesh A. Nimje and Neel Mukeshbhai Gandhi

Renewable Energy, 2020, vol. 145, issue C, 1487-1493

Abstract: Large scale wind turbines have been extensively examined for decades, but a very few studies have been conducted on small-scale wind turbines especially for the applications where artificial wind speed is of the order of 15 m per second. This study provides systematic effort towards design and development of small scale wind turbine aimed to operate at high wind speeds. The drag-based wind turbine has an enormous potential for small-scale power generation in cement manufacturing plant. It uses bag filter to prevent environmental pollution so as to let out the clean high velocity exhaust air through the duct. The work reported here presents to utilize exhaust air for electrical power generation. Exhaust air flow has been analysed in Ansys Fluent Software. Ansys Computational Fluid Dynamics (CFD) technology was adopted to evaluate the performance of the wind turbine. The results of torque assessment of the wind turbine in its static as well as dynamic condition have been presented. Experimental setup consisting turbine, generator, battery and load has been tested and validated.

Keywords: Bag filter; Exhaust duct; Air flow; Wind turbine design; ANSYS CFD analysis; Power output (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119308936
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:145:y:2020:i:c:p:1487-1493

DOI: 10.1016/j.renene.2019.06.065

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1487-1493