EconPapers    
Economics at your fingertips  
 

Thermal cracking behavior, products distribution and char/steam gasification kinetics of seawater Spirulina by TG-FTIR and Py-GC/MS

Jie Li, Yuanyu Tian, Peijie Zong, Yingyun Qiao and Song Qin

Renewable Energy, 2020, vol. 145, issue C, 1761-1771

Abstract: In this study, fast pyrolysis of seawater Spirulina, is carried out to evaluate the potential of deriving valuable chemicals and fuel molecules from this seawater algae variety. The devolatilization behavior and gaseous product evolution of seawater Spirulina were carried out by TG-FTIR. Py-GC-MS was employed to investigate the composition and distribution of volatile products formed from the seawater Spirulina through high-temperature fast pyrolysis process. Finally, the seawater Spirulina char gasification reactivity and kinetic parameters were evaluated using advanced methods of volume, shrinking core and random pore. Results indicate that the thermal cracking process of seawater Spirulina mainly consisted of three reaction stages, including dehydration and drying stage, fast pyrolysis stage and residues slow decomposition stage. High heating rate has significant effect on the performance of devolatilization profiles. H2O, CH4, CO2, HNCO, NH3, HCN, CO, C–O bond and CO bond were the typical gaseous products released from the fast pyrolysis stage of seawater Spirulina. The maximum release rate of seawater Spirulina for CH4 was located at about 450 °C, corresponding to the main pyrolysis of long-chain fatty acids from lipid fraction. The high temperature fast pyrolysis of seawater Spirulina resulted in aliphatic (alkanes, alkenes) and aromatic hydrocarbons, esters, oxygenates (carboxylic acids, aldehydes, ketones, and alcohols), phenolics, and nitrogen- and sulfur-containing organic compounds. Above 750 °C was considered as the optimum temperature, which can reduce the generation of oxygenated compounds, and the content of nitrogen and phenolic compounds were decreased, maximum yield of quantified hydrocarbons was observed. The increase of gasification temperature can obviously improve the gasification reactivity of seawater Spirulina chars. The activation energies of the VM, SCM and RPM models of seawater Spirulina chars were 187.95, 173.14 and 154.34 kJ/mol, respectively. RPM displays a significant fitness with the experimental data than those of the other two models.

Keywords: Biomass; Microalgae; Pyrolysis; Product distribution; Gasification; Gasification kinetics (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119311152
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:145:y:2020:i:c:p:1761-1771

DOI: 10.1016/j.renene.2019.07.096

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1761-1771