Sub-hourly forecasting of wind speed and wind energy
Aurore Dupré,
Philippe Drobinski,
Bastien Alonzo,
Jordi Badosa,
Christian Briard and
Riwal Plougonven
Renewable Energy, 2020, vol. 145, issue C, 2373-2379
Abstract:
The need to have access to accurate short term forecasts is essential in order to anticipate the energy production from intermittent renewable sources, notably wind energy. For hourly and sub-hourly forecasts, benchmarks are based on statistical approaches such as time series based methods or neural networks, which are always tested against persistence. Here we discuss the performances of downscaling approaches using information from Numerical Weather Prediction (NWP) models, rarely used at those time scales, and compare them with the statistical approaches for the wind speed forecasting at hub height. The aim is to determine the added value of Model Output Statistics for sub-hourly forecasts of wind speed, compared to the classical time series based methods. Two downscaling approaches are tested: one using explanatory variables from NWP model outputs only and another which additionally includes local wind speed measurements. Results of both approaches and of the classical time series based methods, tested against persistence on a specific wind farm, are considered. For both hourly and sub-hourly forecasts, adding explanatory variables derived from observations in the downscaling models gives higher improvements over persistence than the benchmark methods and than the downscaling models using only the NWP model outputs.
Keywords: Wind speed forecasting; Very-short term; Wind energy forecasting; Downscaling; Statistical model; Numerical weather prediction (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119311814
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:145:y:2020:i:c:p:2373-2379
DOI: 10.1016/j.renene.2019.07.161
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().