EconPapers    
Economics at your fingertips  
 

Lignocellulose-degrading enzymes production by solid-state fermentation through fungal consortium among Ascomycetes and Basidiomycetes

Patrísia de Oliveira Rodrigues, Leandro Vinícius Alves Gurgel, Daniel Pasquini, Fernanda Badotti, Aristóteles Góes-Neto and Milla Alves Baffi

Renewable Energy, 2020, vol. 145, issue C, 2683-2693

Abstract: In this study, five fungal strains (Aspergillus niger SCBM1 – Ni, Aspergillus fumigatus SCBM6 – Fu, Trametes versicolor 561 – Tr, Ganoderma lucidum 601 – Ga and Pleurotus ostreatus PL06 – Pl) were cultivated individually and in consortium for biosynthesis of lignocellulose-degrading enzymes by solid-state fermentation (SSF). The enzyme production was investigated using a 25−1 fractional factorial design, with a total of 16 experiments (F1–F16) using raw sugarcane bagasse and raw wheat bran as substrates. Among the enzymatic extracts produced, Ni (F1) exhibited the highest production of endoglucanase (82.70 U/gds) (units per gram of dry substrate), exoglucanase (80.48 U/gds), β-xylosidase (145.01 U/gds) and manganese peroxidase (3.38 U/gds). For filter paper cellulase, Tr cocktail (F5) was the one that stood out (9.45 U/gds). Among the extracts produced in consortium, Ni + Tr + Pl (F6) presented the highest production of β-glucosidase (171.09 U/gds), β-xylosidase (139.99 U/gds) and manganese peroxidase (3.29 U/gds). For FPase, Ni + Fu + Ga (F12) exhibited the best production (10.46 U/gds). The highest xylanase biosynthesis (2582.38 U/gds) was obtained in Ni + Fu + Pl extract (F4). For laccase, the maximum biosynthesis (25.27 U/gds) was obtained in Tr + Ga + Pl (F13). The cocktails that presented the best enzyme production were: Ni (F1), Ni + Fu + Pl (F9), Ni + Tr + Pl (F6) and Ni + Ga + Pl (F10), demonstrating that the use of microbial consortium can be a promising alternative to obtain enzymatic cocktails with high synergism.

Keywords: Coculture; Ascomycetes; Basidiomycetes; Enzymatic cocktails; Synergism (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119312285
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:145:y:2020:i:c:p:2683-2693

DOI: 10.1016/j.renene.2019.08.041

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:2683-2693