A novel electrical charging condensing heat exchanger for efficient particle emission reduction in small wood boilers
Julija Grigonytė-Lopez Rodriguez,
Heikki Suhonen,
Ari Laitinen,
Jarkko Tissari,
Miika Kortelainen,
Petri Tiitta,
Anna Lähde,
Jorma Keskinen,
Jorma Jokiniemi and
Olli Sippula
Renewable Energy, 2020, vol. 145, issue C, 521-529
Abstract:
Small-scale biomass combustion is an important source of fine particles in ambient air, causing adverse health and environmental effects. Thus, there is a clear need to develop efficient and feasible flue gas cleaning technologies for small-scale combustion appliances. In this study a novel electrical charging condensing heat exchanger (eCHX) for combined fine particle removal and efficient heat recovery from flue gases was demonstrated in a small biomass-fired boiler. The method is based on the combination of a shielded corona charger and a condensing heat exchanger, where fine particles are removed by the electrophoretic, thermophoretic and diffusiophoretic forces. The eCHX was found to decrease >80% of fine particle mass (PM1) emissions and >40% of particle number emissions with simultaneous high thermal efficiency in the heat exchanger. The usage of the condensing heat exchanger without electrical charging resulted in 40% decrease in PM1 emissions when compared to the usage of a traditional tube heat exchanger. The advantage of the eCHX system is that it replaces the conventional heat exchanger in boilers, making it a compact and inexpensive solution, when compared to additional flue gas cleaning devices installed after the boiler.
Keywords: Particle emission; Heat exchanger; Biomass combustion; Electrical charging (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811930878X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:145:y:2020:i:c:p:521-529
DOI: 10.1016/j.renene.2019.06.052
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().