EconPapers    
Economics at your fingertips  
 

Gaussian process regression modeling of wind turbines lightning incidence with LLS information

P. Sarajcev, D. Jakus and E. Mudnic

Renewable Energy, 2020, vol. 146, issue C, 1221-1231

Abstract: This paper presents a machine learning (ML) approach to wind turbine (WT) lightning incidence analysis in complex terrain, based on the information obtained from a lightning location system (LLS). A particular ML model of the WTs lightning incidence is developed, using Bayesian statistical learning and Gaussian process regression, and trained on the actual LLS data. The model is developed around a known proposition that the lightning strike frequency data are emanating from a Poisson stochastic process. It further makes use of an attractive radius concept of lightning attachment, employs a sophisticated analysis of the WT effective height—which leverages terrain elevation data—and introduces spatial autocorrelation of lightning strikes. It provides a probabilistic risk assessment of WT lightning damage, along with a statistical measures of the associated monetized financial losses. Proposed ML model benefits from the Bayesian ability to quantify uncertainty of model parameters, and employ hierarchical model structure that informs model parameters through the mutual higher-level hyperpriors. Proposed model enables both investors and insurance companies to asses risks associated with lightning incidence to WTs, considering historical LLS data and future wind farm installation locations.

Keywords: Bayesian statistics; Gaussian process regression; Lightning; LLS; Machine learning; Wind turbine (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119310705
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:146:y:2020:i:c:p:1221-1231

DOI: 10.1016/j.renene.2019.07.050

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1221-1231