EconPapers    
Economics at your fingertips  
 

Dynamic modeling and free vibration analysis of horizontal axis wind turbine blades in the flap-wise direction

H. Jokar, M. Mahzoon and R. Vatankhah

Renewable Energy, 2020, vol. 146, issue C, 1818-1832

Abstract: The dynamic modeling and free vibration analysis of horizontal axis wind turbine (HAWT) blades in the flap-wise direction are addressed in this paper. Blade kinetic and potential energy are evaluated while taking into account the influences of gravity force, centrifugal force, and the blade rotary inertia. Using Hamilton's principle, a nonlinear partial differential equation with time and space varying coefficients together with appropriate boundary conditions is derived as a novel and comprehensive dynamic model for the blade vibration in the flap-wise direction. After linearizing and simplifying the nonlinear model, the Rayleigh-Ritz method is employed to find natural frequencies and their associated mode shapes. Furthermore, the National Renewable Energy Laboratory (NREL) 5-MW reference wind turbine is chosen to investigate the effects of the rotary inertia, angular velocity, hub radius, pitch and precone angles on its dynamic characteristics. It is shown that increasing the hub radius and the angular velocity or decreasing the rotary inertia, significantly increases the natural frequencies while design parameters such as pitch or precone angles slightly affect the dynamic characteristics of the blades. The accuracy of the simplified model is also verified by comparing results for natural frequencies with some existing data in the literature.

Keywords: Wind turbine vibration; Blade natural frequency; Blade flap-wise mode shape; Nonlinear dynamic equation; Rayleigh-ritz (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119311516
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:146:y:2020:i:c:p:1818-1832

DOI: 10.1016/j.renene.2019.07.131

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1818-1832