EconPapers    
Economics at your fingertips  
 

Biodiesel and biogas production from Isochrysis galbana using dry and wet lipid extraction: A biorefinery approach

Alejandra Sánchez-Bayo, Daniel López-Chicharro, Victoria Morales, Juan José Espada, Daniel Puyol, Fernando Martínez, Sergi Astals, Gemma Vicente, Luis Fernando Bautista and Rosalía Rodríguez

Renewable Energy, 2020, vol. 146, issue C, 188-195

Abstract: Wet lipid extraction combined with residual biomass anaerobic digestion are alternatives to reduce the overall energy consumption of biodiesel production from microalgae. Solvents with different polarities have been studied to assess dry and wet lipid extraction process from Isochrysis galbana microalga. Ethyl acetate (EA) and a chloroform:methanol (CM) mixture yielded the best lipid extraction results in the dry and wet route with suitable lipid compositions. Fatty acid methyl esters (FAMEs) conversion of dry and wet extracted lipids with these solvents was performed by using both homogeneous (H2SO4) and heterogeneous (resin CT 269) catalysts. FAME production from wet extracted lipids with the EA solvent using the CT-269 resin constitutes an advantageous process because it avoids the water elimination step, and the CT-269 is a heterogeneous commercial catalyst, readily to separate after reaction. Lipid-spent microalga was anaerobically digested, obtaining that waste biomass from the wet extraction with EA had the highest methane yield (310 mL CH4/g volatile solids (VS). Energy balance analysis for FAMEs production with EA solvent (wet route) and heterogeneous catalyst yielded an energy recovery of about 80% in terms of biodiesel and biogas. Therefore, this process constitutes a promising route under an energy-driven microalga biorefinery.

Keywords: Lipid extraction; Microalgae; Biodiesel; FAME; Anaerobic digestion; Biorefinery (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119309887
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:146:y:2020:i:c:p:188-195

DOI: 10.1016/j.renene.2019.06.148

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:188-195