The energy efficient use of an air handling unit for balancing an aquifer thermal energy storage system
Basar Bozkaya and
Wim Zeiler
Renewable Energy, 2020, vol. 146, issue C, 1932-1942
Abstract:
Aquifer thermal energy storage (ATES) systems, which utilize underground water for heat exchange with buildings, have been proven to be an excellent heating and cooling source. However, their operation is limited by strict regulations, one of which is the requirement for balance in the amount of heat transfer to the ground. Systems are highly exposed to cooling dominated loads, which results in excess heat injection into the ground. Commonly, an air handling unit is utilized to expel heat from the ATES system. This is known as the direct compensation (DC) method. In this study, an alternative approach that uses night ventilation (NV) was presented as a promising solution in combination with DC. Night ventilation can be used to decrease the cooling load and by using NV the system can avoid excess heat injection into the ground. The DC method was combined with NV under various control settings and compared with a system that uses only DC. The optimal operational setting between DC and NV operation was determined based on simulating a case study building. The study determined that the energy performance of the system can be improved by 16% by optimally adapting NV to the DC method.
Keywords: Aquifer thermal; Aquifer thermal energy storage; Thermal balance; Control of ATES; Air handling unit (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119311310
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:146:y:2020:i:c:p:1932-1942
DOI: 10.1016/j.renene.2019.07.111
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().