Gaussian Process Regression for numerical wind speed prediction enhancement
Haoshu Cai,
Xiaodong Jia,
Jianshe Feng,
Wenzhe Li,
Yuan-Ming Hsu and
Jay Lee
Renewable Energy, 2020, vol. 146, issue C, 2112-2123
Abstract:
This paper studies the application of Multi-Task Gaussian Process (MTGP) regression model to enhance the numerical predictions of wind speed. In the proposed method, a Support Vector Regressor (SVR) is first utilized to fuse the predictions from Numerical Weather Predictors (NWP). The purpose of this regressor is to map the numerical predictions at coarse geographical nodes to the desired turbine location. In subsequent analysis, this SVR prediction output is further enhanced by the MTGP regression model. Based on the validation results on the real-world data from large-scale off-shore wind farm, the prediction accuracies of the NWP are significantly improved at both the short-term horizons (1–6 h ahead) and the long-term horizons (7–24 h ahead) by employing the proposed method. More importantly, the short-term prediction accuracy after enhancement is found comparable or even better than the cutting-edge statistical models for short-term extrapolations.
Keywords: Wind speed prediction; Multi-task Gaussian process; Gaussian process regression; Support vector machine; Time series prediction; Forecasting (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119312054
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:146:y:2020:i:c:p:2112-2123
DOI: 10.1016/j.renene.2019.08.018
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().