EconPapers    
Economics at your fingertips  
 

Parameter analysis of an ammonia-water power cycle with a gravity assisted thermal driven “pump” for low-grade heat recovery

Z.X. Wang, S. Du, L.W. Wang and X. Chen

Renewable Energy, 2020, vol. 146, issue C, 651-661

Abstract: The diaphragm pump is commonly utilized in the small-scale ammonia-water power cycle for pumping the liquid from absorber to evaporator. The electricity consumption and possible leakage of such a pump influence the system efficiency and reliability significantly. In order to find an alternative “pump” with high reliability and low cost, a gravity assisted thermal driven “pump” (GTP), which is consisted of three top-down organized units connecting absorber and evaporator separately, is designed. With the charging and discharging phases, the pressure in each unit fluctuates, and the level of the liquid increases and decreases alternately by the function of gravity. The results of the system show that the net work and thermal efficiency are 10.68 kW and 9.9%, respectively, when the evaporator and absorber are at 140 °C/4000 kPa and 25 °C/800 kPa separately. The optimal net work, thermal efficiency and exergy efficiency are improved by 4.87%, 3.62% and 10.06% respectively compared with the conventional cycle. An application of the GTP power cycle with the capacity of 10 kW driven by the biomass boiler is analyzed, and the results show that the electricity produced by 645 kg biomass pellets can support more than 12 households per day.

Keywords: Low-grade thermal energy; Small-scale power system; Gravity assisted thermal driven “pump”; Ammonia-water; Absorption (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119310341
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:146:y:2020:i:c:p:651-661

DOI: 10.1016/j.renene.2019.07.014

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:651-661