Influence of the location of discrete macro-encapsulated thermal energy storage on the performance of a double pass solar plate collector system
K.R. Arun,
M. Srinivas,
C.A. Saleel and
S. Jayaraj
Renewable Energy, 2020, vol. 146, issue C, 675-686
Abstract:
In this work, an outdoor experimental analysis is conducted to determine the impact on the useful heat gain when discrete cylindrical energy storage units are directly integrated into the solar collector. The collector has a double-pass airflow channel pathway, and the storage is intended to serve only for a short-term. The location of storage inside the collector is always a major concern. This study seeks to determine whether the thermodynamic performance of the system is effective by the location of cylindrical energy storage (paraffin wax) capsules on the upper or the lower airflow channel pathway. The obtained results suggest that due to asymmetric channel depth, the thermodynamic performance of the collector was not greatly influenced by the placement of capsules, unlike with symmetric channel depths. The amount of useful heat gain when storage was placed in the upper (Case A) and lower (Case B) airflow pathways was 0.35 kW and 0.4 kW. For Case A and Case B, the average collector thermal efficiency was 62.9% and 73.7%, and the exergy efficiency was 44.3% and 47.5%. The energy payback time for the collector based on energy calculations is nine months, and that on exergy analysis is 34 months and 20 days.
Keywords: Macro-encapsulation; Energy storage; Paraffin wax; Solar collector (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119310560
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:146:y:2020:i:c:p:675-686
DOI: 10.1016/j.renene.2019.07.036
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().