Natural-draft flow and heat transfer in a plancha-type biomass cookstove
José Núñez,
Miguel F. Moctezuma-Sánchez,
Elizabeth M. Fisher,
Víctor M. Berrueta,
Omar R. Masera and
Alberto Beltrán
Renewable Energy, 2020, vol. 146, issue C, 727-736
Abstract:
The fluid flow, heat transfer, and gas-phase chemical reactions for a natural-draft plancha-type biomass cookstove are studied at steady state with a commercial CFD code, ANSYS Fluent™. Different firepowers (in the range of real operating conditions), modeled as different flow rates of wood volatiles entering the 3D computational domain, were investigated. Firepower was found to have minimal effect on the air flow rate through the cookstove and the efficiency, but to strongly affect stove temperatures and heating rates. The main results were duplicated by a simple analytical model with one tunable parameter, and with simplified combustion, heat transfer, fluid properties, and pressure losses. The analytical model highlights the importance of the air mass flow rate through the cookstove, which is affected by design choices. The largest diferences between the CFD model and the analytical model occurred at the lower firepowers, when temperatures were so low that combustion was incomplete.
Keywords: Plancha-type biomass cookstove; Combustion; Total air mass flow rate; Overall efficiency (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119310274
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:146:y:2020:i:c:p:727-736
DOI: 10.1016/j.renene.2019.07.007
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().