EconPapers    
Economics at your fingertips  
 

Vibration analysis for large-scale wind turbine blade bearing fault detection with an empirical wavelet thresholding method

Zepeng Liu, Long Zhang and Joaquin Carrasco

Renewable Energy, 2020, vol. 146, issue C, 99-110

Abstract: Blade bearings, also termed pitch bearings, are joint components of wind turbines, which can slowly pitch blades at desired angles to optimize electrical energy output. The failure of blade bearings can heavily reduce energy production, so blade bearing fault diagnosis is vitally important to prevent costly repair and unexpected failure. However, the main difficulties in diagnosing low-speed blade bearings are that the weak fault vibration signals are masked by many noise disturbances and the effective vibration data is very limited. To address these problems, this paper firstly deals with a naturally damaged large-scale and low-speed blade bearing which was in operation on a wind farm for over 15 years. Two case studies are conducted to collect the vibration data under the manual rotation condition and the motor driving condition. Then, a method called the empirical wavelet thresholding is applied to remove heavy noise and extract weak fault signals. The diagnostic results show that the proposed method can be an effective tool to diagnose naturally damaged large-scale wind turbine blade bearings.

Keywords: Blade bearing fault diagnosis; Low-speed bearing; Vibration signal analysis; Empirical wavelet transform; Wavelet thresholding (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119309334
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:146:y:2020:i:c:p:99-110

DOI: 10.1016/j.renene.2019.06.094

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:99-110