Thermal conversion of defective coffee beans for energy purposes: Characterization and kinetic modeling
Carolina Monteiro Santos,
Leandro Soares de Oliveira,
Elém Patrícia Alves Rocha and
Adriana Silva Franca
Renewable Energy, 2020, vol. 147, issue P1, 1275-1291
Abstract:
This work aimed to characterize the fuel properties and to evaluate the kinetics of thermal decomposition of defective coffee beans (DCB). Three thermogravimetric-based methods were evaluated: Ozawa-Flynn-Wall (OFW), Kissinger-Akahira-Sunose (KAS) and Friedman. The results showed that DCB presented low activation energy and that the evaluated mathematical models, although satisfactory for describing thermal decomposition in inert atmospheres, did not provide a satisfactory description of the oxidizing process. The enthalpy values indicated that the energy differences between the reagents and the activated complex are related directly to the activation energies. Pre-exponential factors indicated first-order reactions. The immediate analysis and the lignocellulosic contents indicated a biomass with low levels of humidity and ashes, high carbon and volatile concentrations, besides thermal stability. The obtained calorific value was 19.39 MJ/kg. The overall results obtained in the present study indicate that this biomass has the potential to be used as a solid biofuel.
Keywords: Biomass; Model-free kinetics; Kinetic parameters; Thermal analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119313825
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:147:y:2020:i:p1:p:1275-1291
DOI: 10.1016/j.renene.2019.09.052
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().