Design and performance evaluation of solar - LPG hybrid dryer for drying of shrimps
S. Murali,
P.R. Amulya,
P.V. Alfiya,
D.S. Aniesrani Delfiya and
Manoj P. Samuel
Renewable Energy, 2020, vol. 147, issue P1, 2417-2428
Abstract:
The study was aimed at design and development of an energy efficient solar dryer suitable for continuous drying operation. In this dryer, water was used as a thermal energy storage and heat transfer medium, and air as an intermediate fluid. The major parts of the dryer were flat-plate solar water collector, water storage tank, drying chamber, heat exchanger, and liquefied petroleum gas (LPG) water heater. The dryer was designed to work mostly on solar energy during peak sunshine hours and LPG water heater as auxiliary heat source during low sunshine hours. The performance of the developed solar-LPG hybrid dryer was evaluated using shrimps (Metapenaeus dobsoni). The moisture content of fresh shrimp was reduced from 76.71% (w.b) to 15.38% (w.b) within 6 h of drying. The drying rate curve showed that shrimp drying occurred under falling-rate drying period. Results revealed that the water was capable of capturing maximum heat energy during peak sunshine hours. The maximum collector outlet temperature of 73.5 °C was obtained during drying. Overall, solar system supplied 73.93% of heat energy and LPG water heater assisted rest of the energy requirement due to lower incident solar radiation during start and end of drying. The maximum collector and drying efficiency obtained for shrimp drying were 42.37% and 37.09%, respectively.
Keywords: Solar dryer; Thermal energy storage; Sensible heat; LPG water heater; Heat exchanger (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119314934
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:147:y:2020:i:p1:p:2417-2428
DOI: 10.1016/j.renene.2019.10.002
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().