Optimal sizing of a wind-energy storage system considering battery life
Ye Liu,
Xiaogang Wu,
Jiuyu Du,
Ziyou Song and
Guoliang Wu
Renewable Energy, 2020, vol. 147, issue P1, 2470-2483
Abstract:
A battery energy storage system (BESS) can smooth the fluctuation of output power for micro-grid by eliminating negative characteristics of uncertainty and intermittent for renewable energy for power generation, especially for wind power. By integrated with lithium battery storage system the utilization and overall energy efficiency can be improved. However, this target could be obtained only if the BESS is optimal matched. For this issue, the degradation of battery capacity has a significant impact on the operating costs of Wind-ESS system. The research focus on the optimal method for components sizing of BESS in Wind-ESS system with independent system operators. We present an operating cost model for the hybrid energy storage system considering capacity fading of lithium battery in the cycle life. For the optimal objective of component sizing, the global optimization method of dynamic programming (DP) is adopted by setting operating costs and capacity degradation as optimal objectives under the constrains of performance for lithium battery and requirement for grid operation. Based on the DP algorithm and capacity degradation of battery model, the optimal output of the wind power is obtained. The rule based method and genetic algorithm are also be used for simulation. The simulation results show that compared with other two optimal approaches, capacity degradation and operation cost of energy storage for wind power generation system are significantly reduced.
Keywords: Battery storage plants; Wind energy; Wind power generation; Dynamic programming(DP) (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811931465X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:147:y:2020:i:p1:p:2470-2483
DOI: 10.1016/j.renene.2019.09.123
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().