Coupling a Hydronic Heating Pavement to a Horizontal Ground Heat Exchanger for harvesting solar energy and heating road surfaces
Raheb Mirzanamadi,
Carl-Eric Hagentoft and
Pär Johansson
Renewable Energy, 2020, vol. 147, issue P1, 447-463
Abstract:
The traditional method for anti-icing roads is distributing salt and sand. However, the method causes environmental pollution and damages to road infrastructures. A renewable alternative method for winter maintenance of roads is to use Hydronic Heating Pavement (HHP), coupled to a Ground Heat Exchanger (GHE). The aim of this paper is to examine the feasibility of the coupled HHP system to a Horizontal GHE (HGHE) for harvesting solar energy during summer and anti-icing road surfaces during winter. A hybrid 3D numerical simulation model is used to analyze the harvesting and anti-icing operations. Furthermore, a 2D numerical simulation model is used to calculate the heat loss from the HGHE to the surrounding ground. The climate data are obtained from Östersund, a city in the middle of Sweden with long and cold winter period. The results showed that the amount of harvested solar energy during summer is, on average, 99kWh/(m2⋅year). Less than 10% of this energy is lost to the surrounding ground. In addition, the required energy for anti-icing the road surface is 75kWh/(m2⋅year). Applying this amount of energy for anti-icing the road surface results in remaining, on an annual average, 580 h of slippery condition on the road surface.
Keywords: Ice-free road; Heat loss; Anti-icing; Required energy; Hydronic pavement (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119312947
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:147:y:2020:i:p1:p:447-463
DOI: 10.1016/j.renene.2019.08.107
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().