Study on the effect of groundwater flow on the identification of thermal properties of soils
Biao Li,
Zongwei Han,
Honghao Hu and
Chenguang Bai
Renewable Energy, 2020, vol. 147, issue P2, 2688-2695
Abstract:
Thermal properties are very important for the design of ground heat exchangers (GHE). The line source model is typically used to identify these parameters, based on the inlet and outlet water temperature of an in-situ thermal response test (TRT). Since the model is based on thermal conduction, convection of groundwater can affect identification results. In this paper, a three-dimensional numerical simulation model was established to simulate the dynamic heat exchange for GHEs. A series of TRTs were conducted to analyse the effect of groundwater seepage on identification of thermal properties of soils. The equivalent thermal conductivity (ETC) was found to be increased gradually, while the equivalent volume heat capacity (EVHC) and the change rates of both parameters decreased with increases in groundwater velocity. The seepage direction was vital for identification, especially when the velocity was fast. The ETC was larger and the EVHC was smaller when the seepage direction was perpendicular as opposed to parallel to the buried pipe plane. The height of the seepage layer significantly affected identification results, and the greater the seepage velocity was, the more significant the effect was. In addition, the higher height led to the larger ETC and the smaller EVHC. The location of the seepage layer had little influence on results, but the ETC was larger and the EVHC was smaller if the location was closer to the ground surface.
Keywords: Thermal properties; TRT; Seepage velocity; Seepage direction; Height of the seepage layer (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118307742
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:147:y:2020:i:p2:p:2688-2695
DOI: 10.1016/j.renene.2018.06.108
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().