CO2-TiCl4 working fluid for high-temperature heat source power cycles and solar application
D. Bonalumi,
S. Lasala and
E. Macchi
Renewable Energy, 2020, vol. 147, issue P3, 2842-2854
Abstract:
The application of CO2 power cycles has proved to be particularly advantageous to exploit high-temperature heat sources (500–800 °C) in the case of available low-temperature heat sinks (15–25 °C). Otherwise, the efficiency of these cycles is strongly reduced when cold sink temperatures are higher than 25 °C. This is the case, for example, of solar applications installed in desert areas whose cold sink is represented by available hot air. Due to these high temperatures of the cold sink, CO2 is inevitably compressed in the supercritical phase thus preventing its more efficient pressurization in the liquid phase.
Keywords: Rankine cycle; Supercritical CO2; Molten salt; Liquid metal; TiCl4; Solar plant (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118312023
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:147:y:2020:i:p3:p:2842-2854
DOI: 10.1016/j.renene.2018.10.018
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().