A global approach to obtain biobutanol from corn stover
María Hijosa-Valsero,
Jerson Garita-Cambronero,
Ana I. Paniagua-García and
Rebeca Díez-Antolínez
Renewable Energy, 2020, vol. 148, issue C, 223-233
Abstract:
The aim of this research was to subject corn stover to a complete biorefinery process at laboratory-scale in order to assess the production of biobutanol. The research was conducted to focus on process simplification, reduction of reagents and optimization of acetone-butanol-ethanol (ABE) fermentation. The main recommendations include the use of low acid concentrations during the physicochemical pretreatment, the selection of adequate Clostridium strains, detoxification of the hydrolysates with reusable adsorption resins and the possibility of performing gas stripping offline to recover ABE solvents. Various pretreatment conditions, fifteen bacterial strains and three polymeric adsorption resins were assessed. The proposed method consisted of a physicochemical pretreatment with 0.89% H2SO4 (w/w) at 160 °C during 5 min, followed by an enzymatic hydrolysis, which released 75% of the sugars contained in corn stover. The hydrolysate was detoxified with the resin Dowex® Optipore® SD-2 and fermented by C. saccharobutylicum DSM 13864, producing 4.75 ± 0.25 g/L acetone, 9.02 ± 0.11 g/L butanol and 0.39 ± 0.01 g/L ethanol in 72 h, with a sugar consumption of 97.3 ± 0.27%. A two-stage gas stripping was applied to the fermentation broth, obtaining butanol-rich condensates (418–425 g/L in the organic phase) in a total time of 6 h.
Keywords: Lignocellulosic biomass; Biobutanol; Corn stover; Pretreatment; Detoxification; Clostridium (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119318981
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:148:y:2020:i:c:p:223-233
DOI: 10.1016/j.renene.2019.12.026
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().